
Taking the real distribution of V t along the track into account improves the agreement be- 
tween the theoretical and the experimental values of r2. 

The conformity of the graphs of selectivity and the value of r2exp close to the calcu- 
lated value unambiguously indicate that the suggested method of determining the size of 
micropores of nuclear filters is correct. 

NOTATION 

Vt, etching rate along the track; VG, rate of etching through the inner pore surface; 
VGI , etching rate through the film surface; l, film thickness (length of track); rl, r2,ref, 
minimum, maximum, and effective pore radii, respectively; ~, half-angle of micropore taper; 
p, ~, running polar coordinates; zi, coordinates of the micropore cross section; Si, cross- 
sectional area; Pi, pressure averaged over the micropore cross section; P, pressure differ- 
ence on the membrane; q, power of the source; ~, dynamic viscosity; N, integral number of 
pores in the membrane; Q, volume of liquid flowing through the filter in unit time; R, selec- 
tivity; Co, C, concentrations of the filtered substance in the initial preparation and in the 
filtrate, respectively;D, micropore diameter. 
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I/qFLUENCE OF THE SHAPE OF A THIN INCLUSION ON THE TEMPERATURE 

DISTRIBUTION IN A PIECEWISE-HOMOGENEOUS PLANE 

G. T. Sulim UDC 536.24.01 

The plane stationary problem of heat conduction is considered without taking ac- 
count of heat elimination through the side surfaces of a composite body with thin- 
walled interlayers on the interface of materials. 

The structure of real materials is always without homogeneity and saturated by defects 
of the vacancy and impurity type, which often have the form of linear cracks or interlayers. 
Such inhomogeneities occur not only in the production stage of materials, but are also struc- 
tural elements in the form of weld or glue connections. Hence, the development of simple 
and, if possible, exact methods of taking account of the influence of defects on the distri- 
bution of physicomechanical fields, particularly the temperature field, is of great value. 

A system of N symmetric inclusions of the small thickness 2h are arranged on the abscis- 
sa axis L = L' + L" of a Cartesian xOy coordinate system so that L' = LI + ... + LN, where 
L n = [a n , bn] is the middle line of the n-th inclusion. The quantity h = h(x) and h(a n) = 
h(b n) = 0 on the inclusion end faces. An ideal thermal contact with two half-planes $2 and 
$I of different thermophysical properties, which are directly in contact on L", is accom- 
plished along the upper L~ and lower L~ boundaries of the interlayer. The thermal flux q~ + 
iq2 at infinity in the upper half-plane $2, the thermal sources of intensity q~ at the points 
z k = x k + iy k of the domains Sk, and the intensity q~ at the point zo = xo on the axis of a 
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certain inclusion are all given. Find the temperature field of the host. 

We represent the temperatures tand to within the inclusion and the surrounding medium 

in theform 

t (~  = R e [ m o l n ( z -  zo)l + t,(z), to(~ = ti(z) + tz(z), (i) 

where t~(z) is the main temperature field corresponding to the heat conduction problem for 
two half-planes in contact in the absence of inclusions and heat sources on the abscissa 
axis, 

t i (~ = --xq2z--Yqi~ + mhlnlz--zk[ + mk(nh--n31nlz-- ~t +2kllnl z --zzI + t?, 

m~= qO , n j -  L1 , q , h =  qt 
2n~j ki + ~ Xk ' 

kj =mjnj  (z~S~,; k, l = 1,2; k~ml; ] = O, 1, 2), 

which satisfies the condition 

t + = t T ,  ~ at+ . o t 7  ---- ~ i ~  (xcL); (2)  
oy 

_ t , ( z ) ,  t 2 ( z ) a r e  t h e  t e m p e r a t u r e  p e r t u r b a t i o n s  w i t h i n  t h e  i n c l u s i o n  and  i n  t h e  domainSiOS:~; 
t ~ i s  c o n s t a n t :  ~ o ,  ,l~, ~2 a r e  h e a t  c o n d u c t i o n  c o e f f i c i e n t s  o f  t h e  i n c l u s i o n s ,  t h e  l o w e r ,  
and  u p p e r  h a l f - p l a n e s ,  r e s p e c t i v e l y .  H e r e  and  l a t e r ,  t h e  s u p e r s c r i p t s  + and  -- d e n o t e  t h e  
l i m i t  v a l u e s  o f  t h e  f u n c t i o n s  a s  t h e  a r g u m e n t  t e n d s  t o  t h e  a b s c i s s a  a x i s  f r o m  t h e  u p p e r  and  
l o w e r  h a l f - p l a n e s ~  r e s p e c t i v e l y ,  w h i l e  t h e  s u b s c r i p t s  o r  t h e  s i g n s  -- and  + a l s o  c o r r e s p o n d  
t o  1 and  2 .  

It is assumed that the inclusions do not affect the nature of the heat flux running 
parallel to their axis, and the thickness of the inclusions varies sufficiently smoothly 
so that the conditions for a perfect thermal contact between composite elements of the in- 
finite plane can be represented as 

Oto = k  Ot (zcL ~, k- -1  2), (3)  
t=to, o-7- o. 0--7- 

at+  = z, OfT t += to, ay ~ff_ (zeL"). (4) 

The accuracy of the second condition in (3) depends only on the angle of deviation of the ! 
normal to the line L k from the ordinate axis. 

Using the smallness of the quantity h, the representation (15, the first condition in 
(3), and consequently the approximate equalities 

L~-- . Ot~ tz(x-4-ih) = t~, Ot, t ,(x+ih)--t ,(x--ih) q(x•  ~ . . . .  
ON 2h . . . .  

we write the second condition in (3) in the form 

o ~ ot~ , (t~ p(x) 
' O) = - - ~ - - - ~ y  T 2 h t~)+_ 2Xh 

where 
2~omoh (x) p(x)= 

~(k :  2,1; xcL:)~ 

~0 ; ~ _ - - l . - - y ;  ~ - -  ' - 
( X -  xo) 2 + h z (x) 2nih 

(5) 

' L' For convenience, the value of the perturbed field t2(z) is removed from the line L k to 
in writing the approximate equalities. 

Taking account of (5), and also the second conditions of (4) and (2), we obtain 

o r  

+ 

'~ 0v ~,-&-j =;(x)  (xcL) 

[~F~-(x) 4- ~.iF-(x)l.-~--[~F-(JO-f-Lfl~§ 2ip(x) (xcL). (6) 
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Here the function F(z) satisfying the condition 

t2(z) = Re(~F(z)dz), [Olz(~ = ReF(z), 0r _ ImF(z)) (7) s au 
has been introduced. 

Let us examine the function Of the jump in the perturbed temperature field y2(x) = 
t~-- tT. According to (2) and (4), it can be assumed that y2(x) ~ 0, if x~i". Let the prime 
denote the derivative with respect to x; then y~Ax = t~ + -- t~- or 

[F+~)-- F-(x)] --[F-(x)---P* (x)l=2V;~) (xEL) �9 (8) 

The solution of linear conjugate problems of the boundary values (6) and (8) which damps out 
at infinity has the form ([I, Sec. 31]) 

rCz)= "' ! v~___(t) d t +  2ko, 
n i  , t - - z  z - - x o - + i h '  

tz(z)=Re[[ ~i'L,nt [ u ~-21%ln(z--xo=hih)] 

(z~Sk; k, l =  I, 2; k=/=l). 

(9) 

.(lO) 

The obvious condition 

~,~(a,) = ~,(b,) = 0 (,=I, 2, ..., N) (11) 

was used in deriving (i0). 

According to the Sokhotskii--Plemelj formula (16.2) in [i], there frollows from (7), (9), 
and (i0) 

t~(x)=•177 ' at~ n, .[ 7!(t)dt  Im 2ko 
Oy ~ i., t - - x  -- x--xo• ' 

and substituting these expressions into (5) yield a Prandtl integrodifferential equation, 

1 i 7; (t) dt __=(xh,,(x) = g(x) (xeL'). (12) 

e(x)=pg,(x)+g,.(x), =(x)=v/h(x). 

x,~ (x--xJZ+y~, h=1,2 

Here 

The solution of (12) should satisfy the condition (ii). Since t2(x -+ ih) = t+(x) was 
assumed earlier, this approximation can then be weakened considerably if (i0) is replaced by 

the relationship 

t~z)--Re[ nl ~ _?_z(t)dt F2koln(z--xo) ] (zeSk; k,l-----l, 2; k=/=l) (13) 
k ~r t-- z• 

and (i) and (13) are later used in place of (i0) in determining the function to (z). 

If the inclusions do not conduct heat (~o = 0), then a(x) - O, g=(x) = 0, and (12) is 
solved in closed form [i]: 

X+(x___)) ~ pg,(t)dt + X+(x)p,~_,(x), 
�9 ~ (x) = n s x+(tXt - x )  

I N 

X(x) = -- ~)Ix-- b.) PN-,(x) = c.x"-' 
n=l 

The complex coefficients c n are determined by using the condition (ii). In the case of abso- 
lutely heat-conducting inclusions (%o = ~), there follows T2(x) = h(x)gz(x) ~ tz(x- ih) -- 
t1(x + ih) from (12). 

Having determined the jump Tz(x) = tz(x + ih) -- tz(x- ih) in the fundamental tempera- 
ture field tz(z) on the edges of- the inclusions, we obtain that the jump Tz(x) + T=(x) in 
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the temperature to(Z) on an absolutely heat-conducting inclusion is zero: the temperature 
within each such inclusion does not vary over the thickness. 

For the thermophysical properties of the half-planes to be equal (%~ = I=), ga(x) - 0~ 
the presence of heat sources on the axis of the inclusions in the homogeneous plane does not 
influence the temperature jump. Moreover, if the heat-conducting properties of the inclu- 
sions and host are identical, then g(x) -= 0, Eq. (12) determines y=(x) - 0, and (i) and (13) 
yield the solution of the problem for a homogeneous plane, 

2 

to (z) = ~ m~lnlz--z~l--xqz~--yqm-~t~. 
/=0 

The p r e v i o u s  approaches  [2, 3] to  the  s o l u t i o n  of  problems about  t h i n - w a l l e d  •  
interlayers permitted the exact realization of just the passage to the limit for a thermally 
impermeable inclusion. 

As an illustration, one inclusion located along the segment [--~, a] of the real axis is 
investigated when h(x) = ho[l -- (x/~)~]V~q (q ~ i). For q = i the interlayer is elliptical 
in shape, and rectangular for q = ~. The solution of (12) for L' = [--~, a] with the condi- 
tion y2(+a) = 0 is sought in the form of the series 

() 
a 

(14) 

where Tp(x), Up_1(x) are Chebyshev polynomials of the first and second kinds. As a result 
of applying the procedure of the method of ornhogonal polynomials [4], we have an infinite 
system of linear algebraic equations to determine the unknown coefficients of the expan- 
sions (14) : 

p=l  

where 

~I~(2~) ~ (--1) m' sin(pm~) 2pm=knC (--1)rap, 

1 
gk f g (at) ] / 1 - -  t ~ U~(t)dt, ~o = 7a 1 -- , v----l---- �9 

_', - ~  2q 
Let us note that 

H ~ =  --  4(k + 1) sin z ( ~  n 

~ ,  ( p ~ k + l ) ;  
8p.~+l= 1, (p = k+l ) .  

It is easy to see that the system of equations (15) is quasi-completely regular for all 
physically possible values of the parameters and we apply the method of reduction to its 
solution [5]. For an inclusion of elliptical shape (q = i), the solution of the system (15) 
is written explicitly: Ap = 2pgp_i/~(p + so). In particular, if there are no heat sources, 
then Ap = q1~(~ + %2)6p_~/~2(i + So) and y2(x) = --AI/~ ~-x --~- (Ixl ~a). 

Computations of the jump in the perturbed field y2(x) on an inclusion in the homogeneous 
plane (~ = X=) subjected to the effect of a homogeneous heat flux at infinity for a/ho = I0 
and different values of the parameters q and % = Io/%1 are performed on an ES-I022 electronic 
computer. In this case A=p = 0 (p = i, 2, ...) and it is sufficient to limit oneself to the 
first 20 nonzero coefficients in the expansions (14) to reach accuracy within 1% limits for 
[x[~ 0.95a in the most unfavorable case of a rectangular absolutely heat-conducting inclu- 
sion. The solutions y2(x) obtained for X = 0.001 and % = i000 differ from the corresponding 
analytic solutions for X = 0 and X = ~ by less than 1%. Computations have shown that y2(x)~ 
0 for any values of the parameters (%o -- %~). If y~(x) denotes the value of the function 
y2(x) found for a definite value of q, then for real numbers c~d~l for each fixed % the 
inequality Iy~(x) I ~ lye(x){ holds, in particular, Iy~(x)[>! u I > Iy~(x) I. 
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Fig. i. Change in the dimensionless quantity Y2(X)kx/qx along the axis of an in- 
clusion in a homogeneous plane for Xo/Xx = 0.5 and some values of q: I) q = i; 2) 
2; 3) 3; 4) 5; 5) i0; 6) I00. 

Fig. 2. Change in the dimensionless quantity yi(x)Xi/q~ along the axis of an in- 
clusion in a homogeneous plate: a) for q = i00; b) q = 4 [I) Xo/Xx = i0,000; 2) 
I0; 3) 5; 4) 2; 5) I; 6) 0.7; 7) 0.5; 8) 0.4; 9) 0.3; i0) 0.2; ii) 0.i; 12) 0.01; 
13) O.OOl; 14) 0.0001]. 

Varying the shape of the inclusion from the elliptical to the rectangular by using the 
parameter q changes y2(0) by not more than 4%. This difference is maximal for X ~ 0.i and 
tends to zero when X § 0 and X § =. The smaller the quantity X, the smaller the influence 
of the shape of the inclusion on the temperature jump; for a heat-impermeable inclusion the 
temperature jump is independent of the shape. The dependence of ya(x) on the quantity q is 
illustrated in Fig. i for X = 0.5, and the dependence of Y2(X) on the parameter X in Fig. 2. 

NOTATION 

L, real axis; L' = LI + ... + L N, middle line of the inclusions; L n = [an, bn], middle 
line of the n-th inclusion; L~, L~, upper and lower edges of the inclusions; $2, Si, upper 
and lower half-planes; h(x), half the inclusion thickness; ho, half the inclusion thickness 
at its middle; z = x + iy, complex coordinate; zj = xj + iyj, heat source coordinate; q~, 
intensity of the j-th heat source; ql + iq2, heat flux at infinity; Xo, El, X2, heat con- 
duction coefficients of the inclusion, lower, and upper half-planes, respectively; t(z), 
to(z), temperatures within and outside the inclusions; t,(z), t2(z), perturbed temperature 
fields insideand outside the inclusions; ti(z), t~, main temperature field in the host in 
the absence of inclusions and its constant component; t~, tj, limit values of the function 
t.(z) (j = 0, i, 2) on the abscissa axis for y > 0 and y < 0; Yk(X), jump in the function 
t~(z) on the inclusion; a, half the length of the inclusion in the example; q, a parameter 
characterizing the shape of the inclusion; T~(x), Ul(x), Chebyshev polynomials of the first 
and second kinds; F(x), gamma function; 6p,m, Kronecker delta; y~(x), value of the function 
y2(x), calculated for a definite q. 
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